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THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS
DEFINED BY TAYLOR SERIES (SECOND PAPER)

By E. M. WRIGHT
Professor of Mathematics in the University of Aberdeen

(Communicated by G. H. Hardy, F.R.S.—Received 27 July 1940)

In a former paper I deduced the asymptotic expansion of the integral function

) = % FEES (00 >0

for large x from asymptotic properties of the function ¢(#). In particular, ¢(#) had to be
regular and its asymptotic behaviour had to satisfy a certain ‘condition A’ throughout the
half-plane #(kt) > K. My results included as special cases most of the known results about
the asymptotic expansion of integral functions.

In the present paper the class of functions is widened and the previous theorems completed.
I also show that my results are now, in an obvious sense, best possible; that is, if the conditions
stated in my theorems are further relaxed, the conclusions are false.

1. In the paper (Wright 1940) to which this is a sequel, I studied the asymptotic
expansion of the integral function

(n) 2

oo'¢
Sx) = g T+ ) (% (x)>0)

for large x when ¢(¢) satisfies certain conditions. Among other results, I showed that
we could determine the expansion of f(x) wherever this consists of an exponentially
large expansion, or of more than one such expansion, provided that ¢(¢) is regular
and satisfies a certain ‘condition A’ in the half-plane* %(xt) > K.

My purpose here is to calculate the asymptotic expansion of f(x) for part at least of
the x-plane when our hypotheses are less, viz. that ¢(7) is regular and satisfies condition
A throughout the ‘sector’

—p<argkt<u, |t|>K, (1-1)
where 4, 4, are any real numbers subject only to the condition thatf
— < I SYS <z

* K is a positive number, not always the same at each occurrence, independent of x and ¢ See
§ 2 for a more precise definition.

t If o, > §m and p, > 4, the sector (1-1) includes the half-plane %(kt) > K, and so our hypotheses
are not less than before. We do not need to consider this case as it was dealt with fully in Wright
(1940). I discuss the two cases in which p, > 47, iy <47 or puy < }m, py >4m in § 3, and show that these
cannot give anything new.
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218 E. M. WRIGHT ON

where y = arg . Then the sector (1-1) includes all but a finite portion of the positive
half of the real axis in the #-plane and lies within the half-plane #(«t) > K. The part
of the x-plane in which we find the asymptotic expansion of f(x) is that in which, for
a suitable value of x1/%,

—min (4, 0,) < arg ¥/ < min (g5, 0,), (1-2)

where w; = 0(p;, —7y), wy = 0(iy, ¥) and (g, y) is a real transcendental function of
4, 7 and | « |. The relevant properties of the function » are exhibited in Lemma 1.

The region (1-2) is bounded by the two spirals (degenerating to straight lines if «
is real) whose equations are

arg x/s = —min (s, 0,), argx'* = min (i, o).

Ifp; = —yorpu, = y,thenw, = yorw, = —y, the two spirals coincide and the region (1-2)
consists only of the resulting spiral. Hence if we know that ¢(¢) is regular and satisfies
condition A on the positive half of the real axis, we have the asymptotic expansion of
J(x) along the spiral arg x/x — y.
If #(1/k) <%, a number g, = p,(y) exists such that, if 4, = y, and

ty = 21 R(1[K) — o5

then the region (1-2) consists of the whole plane and we can determine the expansion
of f(x) for all large x. We have always p,<<4m and 27 %Z(1/k) —pu,<im, so the sector
(1-1) still lies within the half-plane % (xt) > K; in fact, the angle of the sector is

Uy = 2 R (1K) <m.

Hence when Z(1/«) <4 we can deduce all the results of Wright (1940) from hypotheses
substantially less than those of that paper.

Since I now prove part of my former results under wider conditions, it is natural to
ask whether the present results are in some sense ‘best possible’. This is so and I give
examples of functions ¢(¢) and f(x) such that ¢(¢) is regular and satisfies condition A
throughout the sector (1-1), but the asymptotic expansion of f(x) takes a different form
just outside the region (1-2).

Except for LLemma 5, this paper can be read entirely independently of Wright
(1940)-

NoraTioN
2. We write 0= |«|,y=argk (|y|<in),
and, when Z(1/«) <%, we define p, = py(y) by

e27971siny _ cos (2m0~1 cos y)
sin (278! cos y)

tan uy(y) = s Lue(y) [ <dm. (2-1)
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ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 219
We write L=8=4m (Z(1/x)=3),
G=m(=7)s Co=m(y) (Z([k)<3).
We suppose that y<u< %m, write
(v, 1, 7) = COSV—COS jie'+) tan p=2md~" sec psin(p=),

and define 0 = w(y, y) by
X(w: Hs 7) = Oa —ﬂ<w<%‘ﬂ: (2'2)

so that COS @) = COS ﬂe(,u+w) tan y—2m8—1sec ysin (,u,—'y)_ (2,3)

We prove in Lemma 1 that there is one and only one value of w satisfying (2-2).
The real numbers g, and g, satisfy

—dn<—pu <y<Lp,<im. (2-4)

We describe the region (1-1) in the #-plane as the (g, 4,) sector.
We choose arg x to satisfy

—m<argx—tany log | x | <,
and write X =X, =xllr, X = Xersilk,
where s is any integer. We use X and Y to denote particular X.. Thus always
X =X=Xs=Y"=x,
and —md~lcosy<<arg X<md~!cosy. (2-5)

We use ¢ and ¢’ to denote positive numbers, to be thought of as small; K is a positive
number, not always the same at each occurrence, independent of x (and so of X, X
and Y), of the real variables 7, » and w and of the complex variables « and ¢, but possibly
depending on some or all of

’
€, €, K, ﬁ: Ty Hys Bos Oy Qyy vvs Oprigs Ab (AR AM‘

We use the notation ¢ = O(y) to denote that || <K|y| and we always suppose
that | x| > K.

We say that ¢(¢) satisfies ‘ condition A’ in a region in the ¢-plane if there are an integer
M >0 and numbers a;, ..., &1, 4y, ..., 43, such that

R (o)) SR () < oo SP(t41) <P (tag41)>

~_¢,(tﬁ)___ — & KAm ( 1 )
e [t+8) = 2Tt o) T O\t o,.)
in this region.

(2:6)

27-2
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220 E. M. WRIGHT ON

The asymptotic expansion /(Y) is defined by*
M
1Y) = YeY{ S A, Vot O(Y—-aMH)}.
m=1

We also write  S(k, 7; x) = P _ % Y)Y

n=0

Tty "= 2 Mata)

J’(w) — fw pE=T gwlv—1-vlogv) Jy

Kiw

STATEMENT OF RESULTS

3. My main results are as follows:
Theorem 1. If (i) —{<—pu<y<u,<&,,
(i) ¢(2) is regular and satisfies condition A throughout the (u,, us) sector,
and (iii) some X satisfies
—min (4, w,) <arg X¢<min (4, 0,), (3-1)
then Slx) = I(X).
Theorem 2. If (i) Z(1/k) <% and
(ii) ¢(¢) is regular and satisfies condition A throughout the (uy(—7), to(y))
sector, then flx)= > I(X).

| arg X;| < i

If, in addition, there is an X such thatt
—Ho(—7) + K <arg Xe<uo(y) — K,
then Sx) = I(X).

The first part of Theorem 2is Theorem 2 of Wright (1940), except thatin that theorem
the function ¢(¢) had to satisfy stricter conditions, viz. ¢(#) had to be regular and satisfy
condition A throughout the (— 3}, 4m) sector, i.e. a half-plane.

The significance of the various conditions of Theorem 1 will be better appreciated
if we assume for the moment the following lemma.

* This definition of I(y) is not quite the same as that of Wright (1940), but the difference is im-
material within the range of validity of our results. All our statements remain true if I(y) is given its
former, slightly more complicated form.

1 This is so for all ¥ except those in the neighbourhood of the spiral

arg x =tanvy log | x | +p,(y) & secy.


http://rsta.royalsocietypublishing.org/

a
/)

A A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 221

Lemma 1. (1) If y<<u<<im, there is just one number o satisfying (2-2). In particular, if
U =1, then w = —7y; otherwise > — p.

(i) If Z#(1/k) =1, v increases with p.

(iil) If Z(1/k) <%, wincreases with p when y<p<<p,(y), attains its maximum value py( —7y)
when p = py(y) and decreases as p increases when py(y) <p<im.

We can now see that we lose nothing by the restriction that g, <{, and u,<{, in
Theorem 1, nor, a fortiori, by the restriction (2-4). Let us suppose first that Z(1/x) <4,
so that {; = y,(—7) and {, = y,(y). In this case, if g, >{; and u,=>{,, we take g, = ¢
and p, = {, and have complete information from Theorem 2. On the other hand, if,
for example, ;= = py(—7) and gy <&, = py(y), we have, by Lemma 1,

Wy <po(—7) <ty

and so min (p, ©,) = .

There is therefore no loss in (3-1) if we replace y; by w,<gy(—7y). Similar remarks
apply to the case when g, <u,(—7) and py=py(y). Itis thus clear that we can gain no
more information by taking x,>{; or u,>{,.

When Z(1/k) =%, { =, = 4n. If g, =47 and p,>$m, the results of Wright (1940)
apply. Arguments similar to those used above show that we need not consider the
cases p, = 3, po<mand p; <im, p,>3m. Hence here also the restriction is unimportant.

Finally, we show that our results are ‘best possible’ and that the conditions that we
have laid down cannot be relaxed.

Theorem 3. Theorems 1 and 2 are, in a certain sense, best possible results; i.e. the possible
interval (3-1), of arg X cannot be enlarged by € at one end or the other, nor can the (uy(—7v), po(7))
sector in Theorem 2 be replaced by either of the (uy(—7y) —¢, fo(y)) or (fto(—7), #o(y) —€) sectors.
This is true for every k, M, u,, s and positive e.

I prove this (in§ 7) by constructing in each case a suitable f(x) for which the particular
result in question is false under the enlarged conditions.*

PROOF OF PRELIMINARY LEMMAS

4. We now prove six preliminary lemmas, including Lemma 1, which we have
already formulated.

Let us suppose that y<g<3$w and that —Jn<v<<iw. Then x(v, , ) and dy/dv are
continuous functions of » and

02 . - .
BU_}ZC = —COSV ——31n2,usec,u elu+v) tan p—2m0=1sec psin (u—7y) <O0.

* In certain cases my jf(x) depends on e. I have also found an f{x) independent of € for which the
theorems are false under the enlarged conditions for every €. But the proof of this demands a know-
ledge of the asymptotic expansion of a new type of integral function; as I have not yet published the
necessary theorems I content myself with finding a Gegenbeispiel for any given e.
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222 E. M. WRIGHT ON
Also X( :t%ﬂa #s 7) <0, X( —Hs Yy 7) =0,
the latter according as #>y. Hence, if x>y, the equation
X(va # 7) =0 (4'1)

has two roots » = &’ and v = w such that

—Ir<o < —p<w<im. (4-2)
On the other hand, if y =7y,

% = —sinv—siny e+ tany,

which vanishes for v = —y. Hence the equation has just one double root at

V=0=—) =—/. (4-3)
We have thus proved (i) of Lemma 1. Also
(v 1, 7) =0 (4-4)

when —u<v<<w; in fact, when —o'<v<o.
Differentiating (2-3) logarithmically with respect to x, we obtain

ow cosw 2m cos y
ﬁ“cos,usin(,u—i—w)( ) —,u——a)). (4:5)

By (4-2) and (4-3), 0<g+wo<m. Hence dw/du>0, so long as
U+w<2mi~lcosy,

If Z(1/k) =%, i.e. if 2m6~1cosy=m, we see that w increases with x4 throughout the
whole interval y <pg<<4m. This is (ii) of Lemma 1.
If #(1/k) <%, i.e. if 2m0~! cos y <, the position is different. If possible, suppose that

p+w<2md~lcosy
for all 4 such that y <u<4w. Taking logarithms in (2-3) we have

log cosw = log COS/l*tanﬂ(glCa—O?—Z——Iu—ww) gl%}.}'- —®

as u—> . Since dw/du> 0, it follows that w -} as g— im and so
p+o-—>m>2md"1cosy,

a contradiction. Hence for some value of y (y <p<}n) we have y-+w = 270~! cosy and
dw/du = 0. By (2-3) this occurs when

U+o =2m8"1cosy, cosw = >m07'sinYcogy, (4-6)
and solving for 4 and w we find that

tan x4 = tan o(y), tan o = tan jy(—y),
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ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 223
where y,(y) is defined by (2-1). Since | x| <3$w and | w| <}, it follows that

r=p(y)s 0= po(—7). (47)

'Hence when 4 = lto(y) we have the maximum value g, —y) of w, and (iii) of Lemma 1
is then obvious by (4-5).

Lemma 2. If py = —y or py =y (or both), then
—min (fy, 0y) =y = min (y, ©;).
If =6 <= <y <pg <Gy, then
—min (4, 0y) <y-<min (4y, v,).
Lemma 3. If Z(1/k) <% then
—#o(—7) = #o(y) —2md~" cosyy.

Lemma 2 (which gives us a little information about the interval (3-1) and the region
(1-2)) is an immediate corollary of Lemma 1. Lemma 3 follows at once from (4-6) and
(4-7). '

Lemma 4. If
—{+K<arg Xo<{,—K, (4-8)
then (i) Z2(X)>K| X, (4+9)
(i) 2(X,)<%(Xs)—K| Xs| (4-10)
when s # S and | arg X, | <3, and
i) X I(X,) = I(Xy). (4-11)
|arg Xs| <im

(4-9) is immediate, since | arg X | <$7—K, and so
R(Xg)>| Xg|cos (3n—K)>K | Xg|.
Again, if s % 0,
|arg X, |=2m|s| 0 1cosy—|arg X |=nd"tcosy = nZ(1/«)

by (2:5). Hence, if #(1/k)>=1%, then |arg X, | >3}7 and so (4:8) is only satisfied for
S = 0, since {; = {, = . The left-hand side of (4-10) must then be negative or zero and
(4-10) follows from (4-9). Finally, (4-11) is an identity since the sum on the left-hand
side contains just one term, viz. I(Xj).

If Z(1/k) <%, then { = po(—y) and §, = uy(y). If & = arg X, it follows from the
definitions of X| and y,(y) that -

(X)) —R(X,1) = H, | X, | sin (§,—E)), (4-12)
and R(X,) = R(X11) = Hy | X | sin (§+8), (4-13)
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224 E. M. WRIGHT ON
where H, = ¢~2m'sinvgin (2n0~1 cos y) sec {, = K,
and H, = 7 siny |/ = K,

Now let 5, <8 and & > —4n. Then sin ({,—&)>K when s =s5,+1, ..., and so,
by continued application of (4-12),

%(XSI) <'@(Xsl+l) _K l Xsl+l | <‘@(‘XS1+2) NK l X.S‘1+2 |
<. <ZR(Xg)—K| X,

which is (4-10) for s = s;. A similar use of (4:13) proves (4:10) when s>.5 and £ < }7.
Finally, (4-10) is an immediate consequence of (4-9) when }n<|£ | <3m, since
Z(X,)<0.

From (4-10) we see that all the I(X|) except I(X;) on the left hand side of (4:11)
can be absorbed in the error term of /(X). The truth of (4:11) follows.

Lemma 5. S(k, 73 %) _1 > Xlmre%4-0(1).

K |argX| <7
Lemma 6. If —+K<argZ<{,—K (414)
then log S(k, 7; Z)~Z.

Lemma 5 is a trivial corollary of Lemma 6 of Wright (1940), and Lemma 6 follows
at once from Lemmas 4 and 5 of the present paper (with Z for Xj).

Lemma 7. If w>K, then J(w) = O(w™%).
'This is part of Lemma 10 of Wright (1940).

THE FUNDAMENTAL LEMMA

5. Lemma 8. If
(1) —dr<—m<y<py<gm,
(ii) —min (4, w,) <arg Y<min (45, 0,), (51)
and (iii) ¥ (¢) is a regular bounded function of t throughout the (i, u,) sector, then
F(Y) = O(Y!-%¥).
We have four possibilities, viz.
1) —m=7=1p (i)  —py <y<ts,
(i) —py <y = o, (iv) —p =y<py.
In each of the cases (i), (iii) and (iv), the condition (5-1) becomes arg ¥ = y by Lemma
2; also the (g, p,) sector in case (i) forms part of the corresponding sectors in cases (iii)

and (iv). Hence Lemma 8 in cases (iii) and (iv) is a corollary of the same lemma in
case (i) and we have only to prove the lemma in cases (i) and (ii).
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ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 225

Proof of Lemma 8 when —pu; =y = p,. In this case argY =y and | ¢(¢) | <K when ¢
is real and /> K. When | arg (k) | <m and | arg («¢+«) | <7, we have

1

— t—of € .
{F(Kwa <K!t ( t) (5-2)
Hence, when n>K, ¢ <Kz9(n),

Kn—}—ex
where Ht) = 3=# D (¢| Y| §-1¢1)dtcosy,
and so F(Y)<K|Y|*+K 3 9(n). (5-3)

n>K

Differentiating J(¢) Iogarithmically we have

¥ Qi’() Y
?9() ﬁ(t) —i—(?cosylog('&;—').

The latter expression is positive when ¢<{,, vanishes when ¢ = /), and is negative when

t>t,, where
ty=| Y| 311+ 0(Y1)}.

Hence > Hn) <) f

n>K

— O(Yiaet) f 3(2) dt. (5-4)
K
Putting ¢ = | Y | §~1v in this integral, we have

f "9(0) dt = K| Y2t | J{R(Y)}
‘ = O(Y'-*¢Y) (5°5)
by Lemma 7, since Z(Y) = | Y| cosy>K| Y |>K. Hence
F(Y) — O(Y1-%¢t) 4 O(YX) = O(Y1-2¢F)
by (5-3), (5-4) and (5-5).
Proof of Lemma 8 when — p; <y <p,. We write 7 = arg Y; then
cos 7= cos {max (py, o)} >K

by conditions (i) and (ii) of Lemma 8. We take a new complex variable z and write

r=|ul|, 0=argu, g(u)=—¢;%£2£u>
al) = 2, g = AU

v=w(0,7,Y)=cosflog(e|Y|/r)—(n—0)sind.

Vor. 239. A. ' 28
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226 E. M. WRIGHT ON

We write also & = dcosy(N,—1%), where N, is a fixed positive integer chosen large
enough to ensure that £>1—%(a) and that ¢ (u/«) is regular and bounded when

rcos=h, —u<O0<u,. (5-6)
Then £ is a fixed number of the type of K. Also g(u) is regular and, by (5-2),

lg(u) l < Kyp—2(a) gvr (5.7)
throughout the region (5+6).

We take a large positive integer N (which will subsequently be supposed to tend to
infinity) and define the following contours in the #-plane:

(i) 7 and &/’ are the segments of the straight line #(u) = & on which —u, <0<y,
and —pu; <O<7p respectively;

(ii) %y and %y are the arcs of the circle |u| = §(N+3) on which —u, <0<y, and
— i, <O <y respectively;

(iii) @y, %y, 6y are the segments of the lines § = —p,, 0§ = u,, § = 5 which lie between
&/ and %By;

(iv) %, 2, & are the semi-infinite parts of the same lines which lie to the right of .«
We note that €, %, &, become ¥, 9, & when N—oo. The positive directions of
oA, oA, By, By are upwards and the positive directions of €y, Dy, &y, €, 2, & are
outwards from the origin.

Obviously (5-6) is satisfied on all these contours and throughout the two regions
enclosed by .7, %, €y, & and by /', By, €y, &y respectively. Hence g(u) is regular
throughout these regions and on their boundaries. Also g,(u) is regular throughout
the first region and on its boundary except for simple poles at the zeros of 1 —¢=27iv/x,
i.e. at the points u = xn (N,<n<<N), where n is integral; since —u; <y<u, and N,
and N are integers, none of these poles lie on the boundary of the first region.

Hence by Cauchy’s theorem

R T P

(Ll Yoo o
Now on &7 and &7’

glu) = O(Y"), [1—e K[> K, gy(u) = O(Y");

hence ng(u) du— O(Y¥), f g du = O(¥%).

When cos 0> K and 7 is sufficiently large, i.e. if 7> K| Y|, we have v<< —Klogr. Also

on %, and %,
N N | 1 _e—2m'u/l< I >K


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS 227

and so, if N is sufficiently large,
| () | <Ke Nlog X, | gy (u) | < Keflog™.

Hence f 8o(u) du—0, f g(u) du—0,
B, By

as N— oo.
Subtracting (5-9) from (5-8), letting N> o0 and noting that g, () = g,(u) —g(u),
we have

kF(Y) = f(ggl(u) dumfggz(u) du—l—fgg(u) du+O(T)
=L, —L,+L+0(Y") (say). (510)
On & we have 0=y, v=cosylog(e|Y|/r),
| g(u) | < Krh=2@ greosylog el Y1/n

by (5-7). Using this upper bound in L and putting r = | Y| v, we have

|L|<K|Y|b#@ gl Ylcoss J(| V| cosy) = (V- o), (511)
by Lemma 7, since R(Y)=|Y|cosp>K|Y|>K. (5-12)
On %, 0 = —u, and | e2miulc ] | = Kg2md~trsin Guty),
since y> — u;; hence | g (u) | < Krt-2#@ g
where vy =v(—p)—2m8 sin (4, +7)
— cospy log{e| Y| A,(n)/r},
and Ay(n) = exp{(p+7) tan p, — 2~ sec uy sin (4, +7)}> K.

If we putr = | Y|A;(y)vin L;, we have
vir = | Y[4,(n) cos pyv(1—logv),
and L, — O(¥r=emntweosm J{| ¥ | (1) cos )

= O(Yl"“lell\l(n)cosm),
by Lemma 7. Now
Ay(n) cos py = cosp—x(7, uy, —y) <cosy,

by (4-4), provided that —u, <y<u,, which is certainly true when (5-1) is satisfied.

Hence
L, = O(Y'~2¢"). (5-13)

If we use Ao(n) = exp {(uy—1) tan p,— 20~ sec py sin (p,—7)}
similarly in L,, we have

A5(1) €OS g = oS =X (=115 ftps 7) < COST]
when —w,<p<p, and L, = O(Y1-2¢l). (5-14)

28-2
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By (5:10)—(5-14) we have
” F(Y)=0(Y"%e")+O(Y") = O(Y'~>¢Y).

Proor or THEOREMS 1 AND 2

6. If we put @ = o,,,; and

_ 40 $ x4y,
¥ (t) = I(xt-+a) {r<,<;+/f> -2 I‘(Kt+ocm)} ’

we have by (2:6) Sx) =« Azl 4,85k, 0,5 %) +F(Y)
m=1
= 3 IX)+FD+0(),

where Y is any «th root of x.
To prove Theorem 1 we have only to put ¥ = X in Lemma 8. The conditions of
that lemma are satisfied when those of Theorem 1 are satisfied, and

Jx) = 3 I(X)+O0(X*e¥) 4 0(1)

larg X [<im
= I(Xy)
by Lemma 4 (i) and (iii).
To prove Theorem 2 we put Y for that X, which satisfies
—Ho(—y) <arg X<y (7)-
There is just one such X, since
arg X, —arg X, = 2n0~"cosy = pto(—y) +#o(7)
by Lemma 3. We also put g, = yo(—7), fts = fo(y) in Lemma 8, so that
oy = 0(t(—7), =) = o(¥), 0y = po(—7)

by Lemma 1. Again the conditions of Lemma 8 are satisfied and so

Jx) = 2 LX)+ 0(Y'"*e)+0(1).

larg X | <im
Now |arg ¥ | <max{u(y), s~ )} <dr—K, 2(¥)>K|¥,
and so O(1) = O(Y'~#*¢") and Y is one of the X, for which |arg X, | <347. Hence O(1)
and O(Y'~*¢") can be absorbed in the error term of 7(Y) and

Sx) = 2 I(X).

larg X, | <im

This is the first part of Theorem 2 and the second part follows by Lemma 4.
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Proor or THEOREM 3
7. The proof of Theorem 3 is based on three lemmas.
Lemma 9. If 0<C<m, —In<pu<lm, and A is defined by

eCtank —cos C

tand = ———7—, | A| <%,
then u<A<u+C.
Let ‘ w(v) = cos p—cos (u+v) etanr,
Then %% = sec ysin v evtank,

and so @(v) has a minimum when v = 0 and
o(v)>w(0) =0 (—m<v<m, v#0).
Now sin (A —p) = cosA(tan A cos x—sin y)
= cos A cosec CeCtantg(—C) >0,
and sin (C+u—A) = cos A{sin (C+ ) —cos (C+p) tan A}
= cos A cosec Cw(C) >0.
Since —a<CHpu—2A<2m, —m<A—p<m,
it follows that A—u>0, CHpu—21>0, p<d<u+C.

Lemma 10. If y<p,<{,, if Y* = x, if ¢ is any sufficiently small positive number and f, in
particular, py+¢' <, and wy+¢ <y, then we can find functions

WAOES Pl 2
) = 5 fB5 g = 3 fpnlt,

such that (1) ¢,(¢) and ¢,(t) are regular and bounded in the (,, p,) sector and (ii)
R{log f1(x) —Y}>K | Y| when arg Y = p,+¢',

R{log fo(x) —Y}>K| Y| when arg Y = —w,—e¢’.
We take SHx) = Sk, B3 Z5),  folx) = S(k, 5 Z5),
where C, =1, Cy=2m0~1cosy—y—w,>0,

Z1 = Ye—iCi{l-itan ,uz), 22 — Ye2nilk—iCy(1—itan ug)
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Since y,<{,, it follows from the arguments used in the proof of Lemma 1 that
Ho+wy<<2m8~! cos y and so C,>0. Now

$1(n) = Zinxg=n = gixnCrll-itanp)
Go(n) = Zfr g1 = gmiknCatl=itan u)
and so, for s =1 or 2,
| 4,() | = | eiCoweti-itanp) |
— exp [| kt| Cysec iy sin {arg (<)) — ] <1,

provided that —m+p,<<arg («t) <u,. Hence (i) of Lemma 10 is satisfied.
If we take arg ¥ = p,+¢’, we have

arg Z, = arg Y — C| = pty+C| = ply+ 3¢/,
and so arg Z, satisfies (4-14). Hence log f,(x)~Z, by Lemma 6 and
R{log f,(x) — Yy~ R(Z,~ ¥)
= | Y [{e~@1@n2cos (uy+e—Cy) —cos (uy+¢)}
= | Y| e~Crtansesin C; sec A sin (u+2C, —A)
> | Y| e Ortanresin? € secd = K| Y|

by Lemma 9 and since C) = ¢’ <{.
If we take arg ¥ = —w,—¢’, we have

arg Z, = 2md~1cosy—w,—e —Cy = py—¢’,

so that the condition of Lemma 6 is satisfied when Z = Z,; hence logf,(x)~Z, by

Lemma 6. Also
22 — I Yl ei(/,tz—e')+(/¢2+w2)tan/l,z—Zﬂ&—lsec,uzsin(,uz—'y)

= COS W, SEC Yy | V| &re=e)
by (2-3). Hence
R{log fo(x) =V}~ R(Z,—Y)
= | Y|{cosw, sec p, cos (u,—¢") —cos (0,+¢")}
= | Y| secu, sin¢’ sin (g, +0,).
If 4y >7, we have y,+w,>0 by Lemma 1 and so
R{logfo(x) —Y}>K|Y|.

If py =7, then wy, = —y and Us+wy, = 0. We take ¢” = }¢’', write vy = w,-+-¢” and
define p;, by ) , .
(g, y) = Wy, Y <py<{,.
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By Lemma 1 this defines just one value of ;. Since g >7, we have already proved the
second part of Lemma 10 when 4, v and ¢” replace y,, », and ¢’. Hence we can find
an f,(x) such that ¢,(¢) is regular and bounded throughout the ({;, #3) sector and so,
a fortiori, throughout the ({;, #,) sector, and such that

H{log fo(x) = V}>K| Y|

when arg Y = —w;—¢" = —w,—2¢" = —w,—¢’. This completes the proof of Lemma
10.

Lemma 11. If —y<u, <y, if Y* = x, if ¢ is any sufficiently small positive number and if,
in particular, p, +¢ <& and v, +¢' <{,, then we can find functions

2 Ps(n)x” 2 Pa(n) 27
K@) = 3 g ) = X fE

n=0 n=0

such that (1) ¢s(¢) and $,(t) are regular and bounded in the (u,, {,) sector and (ii)
K{log f3(x) —Y}>K | Y| when argY = —pu;—¢’,
R{logf(x) —Y}>K| Y| when arg Y = v, +¢'.

The proof of this is precisely similar to that of Lemma 10 and so I omit it.
Now let us suppose that M = 0 in Theorem 1 and that the interval (3-1) of arg X

is replaced by
—min (4, 0,) <arg Xy<min (5, 0;) +¢. (71)

Let us suppose that w, >u,. Then we have only to choose ¢’ in Lemma 10 so that, in
addition to satisfying the requirements of that lemma, we have ¢’ <e¢. If we take fi(x)
for f(x) and arg ¥ = p,+¢’, we have ¥ = X and

Hlog f(x) — Xg}> K | Xg|. (72)
But, if Theorem 1 is true when (3-1) is replaced by (7-1), we must have

S(x) = O(X~re¥s).
This is false by (7-2).

If w, <u,, we use Lemma 11 and f(x) to obtain our contradiction. Again, if (3-1)

is replaced by
—min (4, 0,) —e<arg Xg<xmin (4, ),

we use f,(x) or f3(x) as the case may be.
Next we suppose that M = 0 in Theorem 2 and that ¢(¢) is to be regular and satisfy
condition A throughout the (#,(—7), #,(y) —¢) sector. We put u, = y,(y) —e and ¢’ <e
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in Lemma 10. Then ¢,(¢) satisfies condition A throughout the (#,(—7), #(7) —¢)

sector and
A J1(x)—Y}>K| Y|

when arg ¥ = yy(y) —e-+¢"<po(y). This contradicts the result of Theorem 2. If the
sector (uo(—7), #o(7)) is replaced by (u,(—7) —¢, #o(7)), f3(x) supplies a similar Gegen-
beispiel.

Hence Theorem 3 is true when M = 0; its truth for M >0 follows by an obvious
use of Lemmas 4 and 5.
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